Abstract

This study investigates the production of furfural via formic acid-catalyzed dehydration of xylose and the effect of simultaneous extraction of furfural using supercritical carbon dioxide (Sc-CO2). The addition of Sc-CO2 results in a secondary reaction pathway comprised of two steps: CO2-catalyzed isomerization of xylose into the reactive intermediate xylulose, followed by furfural production from xylulose, catalyzed by formic acid. Xylose dehydration with CO2 in both batch and semi-batch systems yielded a higher furfural yield and selectivity compared with systems without CO2. The Sc-CO2 extraction in a semi-batch system prevents furfural degradation by maintaining high productivity, even with increased initial xylose concentration. A maximum furfural yield of 68.5% (71.4% selectivity and 99% separation efficiency) was achieved after 5 h at 140 °C and 20 MPa with a constant flow rate of 5 g/min of CO2 and initial concentrations of 10 g/L of xylose and 10 wt% of formic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.