Abstract

This paper presents an alternative semi-analytical model which is able to integrate PVT properties of gas with dynamic pressure domain during production process. A modified three-region radial composite model is developed to evaluate the gas condensate reservoir, taking account of different gas flow behaviors and pressure dependent properties, such as the compressibility factor. The governing equation of the pressure diffusion process is highly nonlinear due to the complex dependence of coefficients on pressure. The linearization of the non-linear partial differential equation describing the complicated gas flowing in a reservoir is handled by application of reasonable definitions of pseudo-pressure and pseudo-time for each region, which is integrated into the reservoir system through physical continuity of changing phases with PVT properties. Modified forms of total compressibility factor are proposed by valid theoretical developments.Results show that gas compositions of a gas condensate reservoir have significant effects on the fluid flow behaviors. Different proportions of C5, C6 and C7+ are simulated with constant makeup of CO2, N2 and C1∼4, showing that small changes in composition of heavier components make distinct differences in the flow behaviors, as reflected on the liquids dropout curves. In addition, total compressibility factor varies with fluid compositions instead of remaining constant in a gas condensate reservoir. Through integrating PVT behaviors, the three-region model is able to accurately describe transient pressure behaviors of a production well in a gas condensate reservoir, which clearly characterizes three regions on the pressure derivative curves. A series of sensitivity studies are conducted to analyze the differences among the three regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.