Abstract

All-solid-state batteries have become the most potential next-generation energy-storage devices. However, it is quite difficult to simultaneously achieve a single solid-state electrolytes (SSEs) layer with both dendrite-free Li metal plating and low interfacial resistance between the cathode and SSEs. Herein, an integrated structure of cathode and double-layer solid electrolyte membrane (IS-CDL) is designed, which greatly improves the interfacial contact and suppresses the Li dendrite growth. The first "polymer in ceramic" solid electrolyte layer (SL1) consists of 80 wt % Li1.4Al0.4Ti1.6(PO4)3 (LATP) nanoparticles and 20 wt % polyethylene oxide (PEO), and the second polymer electrolyte layer is PEO-based solid electrolyte layer (SL2). The SL1 with high mechanical properties can hinder the growth of Li dendrites and reduce the interfacial resistance with the cathode. The SL2 can inhibit the side reaction between the Li metal and LATP. The Li symmetric cells with sandwich-type hierarchical electrolyte (SL2/SL1/SL2) can stably cycle over 3200 h at 0.1 mA cm-2 at 45 °C. The obtained all-solid-state LiFePO4-IS-CDL/Li batteries present a capacity of 142.6 mA h g-1 at 45 °C with the capacity retention of 91.7% after 100 cycles, and all-solid-state NCM811-IS-CDL/Li batteries deliver a specific capacity of 175.5 mA h g-1 at 60 °C. This work proposes an effective strategy to fabricate all-solid-state lithium batteries with high electrochemical performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.