Abstract

Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury.

Highlights

  • Central nervous system (CNS) injuries are a diverse group of disorders that include spinal cord injury (SCI), traumatic brain injury (TBI), and stroke

  • We will focus on the progress in understanding the role of the integrated stress response (ISR) and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury

  • CNS injuries trigger shared processes such as disruption of the blood-brain barrier (BBB) [1, 2] or the blood-spinal cord barrier (BSCB) [3] that facilitate the extravasation of blood substances and cells into the CNS parenchyma and vice versa, excitotoxicity [4,5,6], and hypoxia/ischemia [5, 7], increase the inflammatory response activated after injury [5, 7, 8], and spread the initial cell death due to the injury to other CNS areas, with added detrimental effects

Read more

Summary

Introduction

CNS injuries are a diverse group of disorders that include spinal cord injury (SCI), traumatic brain injury (TBI), and stroke. CNS injuries trigger shared processes such as disruption of the blood-brain barrier (BBB) [1, 2] or the blood-spinal cord barrier (BSCB) [3] that facilitate the extravasation of blood substances and cells into the CNS parenchyma and vice versa, excitotoxicity [4,5,6], and hypoxia/ischemia [5, 7], increase the inflammatory response activated after injury [5, 7, 8], and spread the initial cell death due to the injury to other CNS areas, with added detrimental effects. This state of chronic neuroinflammation increases further the loss of white and grey matter that characterizes many CNS pathologies [25, 26]

Integrated Stress Response in CNS Injury
Salubrinal
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.