Abstract
Conversion/alloying reactions, in which more lithium ions are involved, are severely handicapped by the dramatic volume changes. A facile and versatile strategy has been developed for integrating the SnO2 nanorod array in the PPy nanofilm for providing a flexible confinement for anchoring each nanorod and maintaining the entire structural integrity and providing sustainable contact; therefore, exhibiting much more stable cycling stability (701 mA h g(-1) after 300 cycles) and better high-rate capability (512 mA h g(-1) at 3 A g(-1)) when compared with the core-shell SnO2-PPy NA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.