Abstract

BackgroundAs the fetal heart develops, cardiomyocyte proliferation potential decreases while fatty acid oxidative capacity increases in a highly regulated transition known as cardiac maturation. Small noncoding RNAs, such as microRNAs (miRNAs), contribute to the establishment and control of tissue-specific transcriptional programs. However, small RNA expression dynamics and genome-wide miRNA regulatory networks controlling maturation of the human fetal heart remain poorly understood.ResultsTranscriptome profiling of small RNAs revealed the temporal expression patterns of miRNA, piRNA, circRNA, snoRNA, snRNA and tRNA in the developing human heart between 8 and 19 weeks of gestation. Our analysis demonstrated that miRNAs were the most dynamically expressed small RNA species throughout mid-gestation. Cross-referencing differentially expressed miRNAs and mRNAs predicted 6200 mRNA targets, 2134 of which were upregulated and 4066 downregulated as gestation progressed. Moreover, we found that downregulated targets of upregulated miRNAs, including hsa-let-7b, miR-1-3p, miR-133a-3p, miR-143-3p, miR-499a-5p, and miR-30a-5p predominantly control cell cycle progression. In contrast, upregulated targets of downregulated miRNAs, including hsa-miR-1276, miR-183-5p, miR-1229-3p, miR-615-3p, miR-421, miR-200b-3p and miR-18a-3p, are linked to energy sensing and oxidative metabolism. Furthermore, integrating miRNA and mRNA profiles with proteomes and reporter metabolites revealed that proteins encoded in mRNA targets and their associated metabolites mediate fatty acid oxidation and are enriched as the heart develops.ConclusionsThis study presents the first comprehensive analysis of the small RNAome of the maturing human fetal heart. Our findings suggest that coordinated activation and repression of miRNA expression throughout mid-gestation is essential to establish a dynamic miRNA-mRNA-protein network that decreases cardiomyocyte proliferation potential while increasing the oxidative capacity of the maturing human fetal heart. Our results provide novel insights into the molecular control of metabolic maturation of the human fetal heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.