Abstract

Railway transport has been developed for a variety of requirements with a diversity of studies and technologies in recent years. In particular, the intercity railway transport that can be operated at speed of more than 350 km/h is the goal for the railway industry. Due to vibration and drag forces at high speed, contact force variation occurs between pantograph and catenary. This variation also causes instability in the pantograph and catenary interaction. In this study, multibody dynamics analysis is used to model the catenary. The integration of the catenary model and the pantograph model in the simulation flow produces contact force variations. A sinusoidal feed forward force and a simple feedback control force are applied to control the wave-like contact force fluctuations by means of active dampers. Evaluation of the combination of active control forces will produce optimized forces that may be able to maintain, thus improve the contact force variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.