Abstract

In this paper, fully monolithic integrated Schottky diodes on a high-resistivity (HR) silicon substrate with cutoff frequencies above 1 THz are presented. As HR silicon substrate, a common float-zone substrate was used. The necessity of an optimized layer design will be discussed. As it will be shown, cutoff frequencies above 1 THz are possible even for large area diodes with an optimized layer design, which provides the so-called MOTT operation. The demands for the layer design to realize MOTT operation and the resulting advantages for the component will be discussed in detail. The used fabrication process, which combines two separate standard processes, is explained briefly. The results of the electrical measurements and the achieved cutoff frequency will be summarized. To demonstrate a monolithic integration, the presented Schottky diodes have been manufactured in a process wherein RF microelectromechanical systems switches have been successfully produced. As a key application, a subharmonic mixer, with a 24-GHz RF signal and a 12-GHz local-oscillator signal, will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.