Abstract

A wavelength selective switch (WSS) can route optical signals into any of output ports by wavelength, and is a key component of the reconfigurable optical add/drop multiplexer. We propose a wavefront control type WSS using silicon photonics technology. This consists of several arrayed waveguide gratings sharing a large slab waveguide, wavefront control waveguides and distributed Bragg reflectors. The structure, design method, operating principle, and scalability of the WSS are described and discussed. We designed and fabricated a 1 × 2 wavefront control type WSS using silicon waveguides. This has 16 channels with a channel spacing of 200 GHz. The chip size is 5 mm × 10 mm. The switching operation was achieved by shifting the phase of the light propagating in each wavefront control waveguide, and by controlling the propagation direction in the shared large slab waveguide. Our WSS has no crossing waveguide, so the loss and the variation in loss between channels were small compared to conventional waveguide type WSSs. The heater power required for switching was 183 mW per channel, and the average extinction ratios routed to Output#1 and Output#2 were 9.8 dB and 10.2 dB, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.