Abstract
Silicon photonics is becoming the leading technology for photonic integrated circuits (PICs) due to large-scale integration, low cost, and high-volume productions enabled by complementary metal-oxide-semiconductor (CMOS) fabrication process. Thanks to various material and optical characteristics of crystalline silicon, the silicon-on-insulator platform has become the dominant material platform for silicon photonics. Meanwhile, monolithic or heterogeneous integration of other materials on silicon photonic chips, including the silicon nitride (SiN)-on-insulator platform and the III–V-on-silicon platform, are under rapid developments to enhance the functionalities of silicon photonics. Among the myriad of silicon photonic structures for passive and active components, integrated microresonators are promising for a broad range of applications due to their strong resonance field enhancement, narrowband wavelength selectivity, and compact footprints. In this paper, we review the state of the art and our perspectives on emerging technologies based on integrated silicon photonic microresonators in the technology domains of intradatacenter optical interconnects, integrated nonlinear and quantum photonics, and lab-on-a-chip optical biosensing. We specifically review recent progress and our original work in SOI microring-based crossbar switch fabrics; III–V-on-silicon microresonator lasers; silicon-based microresonator nonlinear and quantum sources; and SiN microresonator-based optical biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Quantum Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.