Abstract

Silicon photonics is becoming the leading technology for photonic integrated circuits (PICs) due to large-scale integration, low cost, and high-volume productions enabled by complementary metal-oxide-semiconductor (CMOS) fabrication process. Thanks to various material and optical characteristics of crystalline silicon, the silicon-on-insulator platform has become the dominant material platform for silicon photonics. Meanwhile, monolithic or heterogeneous integration of other materials on silicon photonic chips, including the silicon nitride (SiN)-on-insulator platform and the III–V-on-silicon platform, are under rapid developments to enhance the functionalities of silicon photonics. Among the myriad of silicon photonic structures for passive and active components, integrated microresonators are promising for a broad range of applications due to their strong resonance field enhancement, narrowband wavelength selectivity, and compact footprints. In this paper, we review the state of the art and our perspectives on emerging technologies based on integrated silicon photonic microresonators in the technology domains of intradatacenter optical interconnects, integrated nonlinear and quantum photonics, and lab-on-a-chip optical biosensing. We specifically review recent progress and our original work in SOI microring-based crossbar switch fabrics; III–V-on-silicon microresonator lasers; silicon-based microresonator nonlinear and quantum sources; and SiN microresonator-based optical biosensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call