Abstract

A magnetic field sensor is an entrance transducer that converts a magnetic field into an electronic signal. Semiconductor magnetic field sensors exploit the galvanomagnetic effects due to the Lorentz force on charge carriers. Integrated semiconductor, notably silicon, magnetic field sensors, are manufactured using integrated circuit technologies. Integrated sensors are being increasingly developed for a variety of applications in view of the advantage offered by the integration of the magnetic field sensitive element together with support and signal processing circuitry on the same semiconductor chip. The ultimate goal is to develop a broad range of inexpensive batch-fabricated high-performance sensors interfaced with the rapidly proliferating microprocessor. This review aims at the recent progress in integrated silicon magnetic devices such as integrated Hall plates, magnetic field-effect transistors, vertical and lateral bipolar magnetotransistors, magnetodiodes, and current-domain magnetometers. The current development of integrated magnetic field sensors based on III-V semiconductors is described as well. Bulk Hall-effect devices are also reviewed and serve to define terms of performance reference. Magnetic device modeling and the incorporation of magnetic devices into an integrated circuit offering in situ amplification and compensation of offset and temperature effects are further topics of this paper. Silicon will continue to be aggressively exploited in a variety of magnetic (and other) sensor applications, complementary to its traditional role as integrated circuit material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.