Abstract
BackgroundSelection indices help the plant breeders to discriminate desirable genotypes on the basis of phenotypic performance. Therefore, the present study was conducted to evaluate thirty sugarcane genotypes (clones) along with two check cultivars in two cropping seasons at Mattana Agricultural Research Station.ResultsThe results showed the studied traits observed in all genotypes were significantly different. The results could significantly discriminate between low and high sugar yield genotypes by describing eleven traits including sugar yield (ton/fed), cane yield (ton/fed), number of stalk/m2, stalk weight (kg), stalk height (cm), stalk diameter (cm), number of internodes, Brix %, sucrose %, purity %, and sugar recovery %. High sugar yield genotypes were selected by discriminant analysis. The discriminant score (DS) could explain 79.2% of sugar yield variations and had a significant canonical correlation (0.89**). Results of discriminant function analysis (DFA) indicated that the most important traits, in order of appearance, are stalk weight, stalk height, purity %, Brix%, and cane yields.ConclusionsGenotypes, G.2017-43, G.2017-42, G.2017-29, G.2017-33, and G.2017-44, showed the highest values of the discriminant score and were recognized as the highest yielder sugarcane genotypes. While the genotypes named Vis, G.2017-30, G.2017-10, G.2017-27, G.2017-25, G.2017-70, G.2017-41, G.2017-40, G.2017-35, and G.2017-58, recognized as the lowest yielder sugarcane genotypes which represent the lowest values of the discriminant score.
Highlights
Selection indices help the plant breeders to discriminate desirable genotypes on the basis of phenotypic performance
Statistical analysis Regular analysis of variance of randomized complete block design (RCBD) and combined analyses of variance of collected data were run as outlined by Gomez and Gomez (1984) who mentioned that the combined analysis can be applied if the coefficient of variation (CV %) for the individual experiments was lower than 20%
The results proved that the coefficient of variation (CV %) for the individual experiments was lower than 20% that permits to apply a combined analysis as supposed by Gomez and Gomez (1984)
Summary
Selection indices help the plant breeders to discriminate desirable genotypes on the basis of phenotypic performance. Sugarcane is the world’s most-produced crop (total production) and ranks among the ten most widely grown crops worldwide. The total global production of sugarcane in 2016–2017 was 1.9 billion tons, and it was grown in approximately 100 countries, covering an area of ~ 26 million hectares (FAOSTAT, 2018). Selection index refers to a linear combination of characters associated with yield. The best-known selection indices involve discriminant functions based on the relative economic importance of various characters. The discriminant function analysis measures the efficiency of various character combinations in selection. The selection index leads to simultaneous manipulation of several characters for genetic improvement of economic yield. This technique provides information on yield components and aids in indirect selection for genetic improvement
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.