Abstract

Nile delta province is rapidly emerging as a major gas province; commercial gas accumulations have been proved in shallow Pliocene channels of El-Wastani Formation. Solar gas discovery is one of the Turbidities Slope channels within the shallow Pliocene level that was proved by Solar-1 well.The main challenge of seismic reservoir characterization is to discriminate between Gas sand, Water sand and Shale, and extracting the gas-charged geobody from the seismic data. A detailed study for channel connectivity and lithological discrimination was established to delineate the gas charged geobody.Seismic data, being non-stationary in nature, have varying frequency content in time. Spectral decomposition of a seismic signal aims to characterize the time-dependent frequency response of subsurface rocks and reservoirs for imaging and mapping of bed thickness and geologic discontinuities. Spectral decomposition unravels the seismic signal into its constituent frequencies.A crossplot between P-wave Impedance (Ip) and S-wave Impedance (Is) derived from well logs (P-wave velocity, S-wave velocity and density) can be used to discriminate between gas-bearing sand, water-bearing sand, and shale. From Ip vs. Is crossplot, clear separation occurs in the P-impedance so post stack inversion is enough to be applied.Integration between Inversion results and Ip vs. Is crossplot cutoffs help to generate 3D lithofacies cubes, which is used to extract facies geobodies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.