Abstract
The existing researches on scheduling for remanufacturing system explicitly or implicitly subjects to the component matching requirements while ignoring the repaired component commonality, which is inconsistent with reality. Thus, this paper proposes a novel integrated scheduling method for remanufacturing system with disassembly-reprocessing-reassembly considering component commonality, where components obtained by reprocessing no longer only be used to reassemble their original product, but also be used to reassemble other remanufacturing products. And a mathematic model is formulated to simultaneously minimize the completion time and total energy consumption. Then, an improved multi-objective genetic algorithm (IMOGA) with a new double-layer representation scheme is developed to handle the considered problem. In the IMOGA, a left-shift strategy is developed to utilize workstation idle time and a component-relink strategy is designed to solve the reassembly decision with component commonality. In addition, the crossover and mutation operators based on grouping strategy are designed to enhance algorithm search ability. After, a local search with two heuristic strategies is proposed to further improve the quality of solutions in the elite set. Finally, a series of comparative experiments are carried out and the results show that IMOGA can tackle this scheduling problem effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.