Abstract

Neurules are a kind of integrated rules integrating neurocomputing and production rules. Each neurule is represented as an adaline unit. Thus, the corresponding neurule base consists of a number of autonomous adaline units (neurules). In this paper, we present the construction process and the inference mechanism of neurules and explore their generalization capabilities. The construction process, which also implements corresponding learning algorithm, creates neurules from a given empirical data set. The inference mechanism of neurules is integrated in its nature; it combines neurocomputing with symbolic processes. It is also interactive, i.e., it interacts with the user asking him/her to provide values for some variables necessary to carry on inference. As shown via experiments, the neurules' integrated inference mechanism is more efficient than the inference mechanism used in connectionist expert systems. Furthermore, neurules generalize much better than their constituent neural component (adaline unit) and are comparable to the backpropagation neural net (BPNN).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.