Abstract

Abstract This paper discusses open-loop and closed-loop active control investigations of a full-scale Bo 105 helicopter rotor with active camber morphing. The potential of an active camber morphing concept to reduce non-rotating vibratory hub loads and rotor power using active control was investigated. The mechanism employed was a dynamically actuated airfoil camber morphing concept known as Fish Bone Active Camber (FishBAC) that smoothly deforms the camber over the aft section of the airfoil. A comprehensive rotorcraft aeromechanics analysis was used that modeled the blade elastic motion using one-dimensional finite beam elements combined with multibody dynamics. Aerodynamic forces were calculated with a free-vortex wake model together with lifting line theory for the blade aerodynamics. The open-loop investigation comprised of a parametric study of relevant control parameters that govern the active camber deflection cyclic actuation profile and their effects on rotor performance and hub vibration. It was found that active camber morphing using superimposed once-per-revolution (1P) and 2P control inputs was able to simultaneously reduce rotor power by 4.3% and overall vibratory hub loads by 27%. Additionally, a closed-loop adaptive multicyclic controller was used to identify the potential of this morphing concept for hub vibration reduction using multicyclic active control inputs. Active camber actuation using a sum of four control harmonic inputs, i.e. 1-4P, resulted in a maximum hub vibration reduction of 50%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call