Abstract
Tubulin isotypes are critical for the functions of cellular microtubules, which exhibit different stability and harbor various post-translational modifications. However, how tubulin isotypes determine the activities of regulators for microtubule stability and modifications remains unknown. Here, we show that human α4A-tubulin, a conserved genetically detyrosinated α-tubulin isotype, is a poor substrate for enzymatic tyrosination. To examine the stability of microtubules reconstituted with defined tubulin compositions, we develop a strategy to site-specifically label recombinant human tubulin for single-molecule TIRF microscopy-based invitro assays. The incorporation of α4A-tubulin into the microtubule lattice stabilizes the polymers from passive and MCAK-stimulated depolymerization. Further characterization reveals that the compositions of α-tubulin isotypes and tyrosination/detyrosination states allow graded control for the microtubule binding and the depolymerization activities of MCAK. Together, our results uncover the tubulin isotype-dependent enzyme activity for an integrated regulation of α-tubulin tyrosination/detyrosination states and microtubule stability, two well-correlated features of cellular microtubules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.