Abstract

SUMMARYWe consider a problem where robots are given a set of task locations to visit with coarsely known distances. The robots must find the task ordering that reduces the overall distance to visit the tasks. We propose an abstraction that models the uncertainty in the paths, and a Markov Decision Process-based algorithm that selects paths that reduces the expected distance to visit the tasks. We also describe a distributed coordination algorithm to resolve path conflicts. We have shown that our task selection is optimal, our coordination is deadlock-free, and have experimentally verified our approach in hardware and simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.