Abstract

A temperature-dependent integrated kinetics for the overall process of photosynthesis in green plants is discussed. The C4 plants are chosen and in these plants, the rate of photosynthesis does not depend on the partial pressure of O2. Using some basic concepts like chemical equilibrium or steady state approximation, a simplified scheme is developed for both light and dark reactions. The light reaction rate per reaction center (R′ 1) in thylakoid membrane is related to the rate of exciton transfer between chlorophyll neighbours and an expression is formulated for the light reaction rate R′ 1. A relation between R′ 1 and the NADPH formation rate is established. The relation takes care of the survival probability of the membrane. The CO2 saturation probability in bundle sheath is also taken into consideration. The photochemical efficiency (ϕ) is expressed in terms of these probabilities. The rate of glucose production is given by R glucose = (8/3)(R′ 1 v L )ϕ(T) g (T) ([G3P]/[P i]2 leaf)SS Q G3P→glucose where g is the activity quotient of the involved enzymes, and G3P represent glycealdehyde-3-phosphate in steady state. A Gaussian distribution for temperature-dependence and a sigmoid function for de-activation are incorporated through the quotient g. In general, the probabilities are given by sigmoid curves. The corresponding parameters can be easily determined. The theoretically determined temperature-dependence of photochemical efficiency and glucose production rate agree well with the experimental ones, thereby validating the formalism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call