Abstract

The atrioventricular (AV) node conducts slowly and has a long refractory period. These features sustain the filtering of atrial impulses and hence are often modulated to optimize ventricular rate during supraventricular tachyarrhythmias. The AV node is also the site of a clinically common reentrant arrhythmia. Its function is assessed for a variety of purposes from its responses to a premature protocol (S1S2, test beats introduced at different cycle lengths) repeatedly performed at different basic rates and/or to an incremental pacing protocol (increasingly faster rates). Puzzlingly, resulting data and interpretation differ with protocols as well as with chosen recovery and refractory indexes, and are further complicated by the presence of built-in fast and slow pathways. This problem applies to endocavitary investigations of arrhythmias as well as to many experimental functional studies. This review supports an integrated framework of rate-dependent and dual pathway AV nodal function that can account for these puzzling characteristics. The framework was established from AV nodal responses to S1S2S3 protocols that, compared with standard S1S2 protocols, allow for an orderly quantitative dissociation of the different factors involved in changes in AV nodal conduction and refractory indexes under rate-dependent and dual pathway function. Although largely based on data from experimental studies, the proposed framework may well apply to the human AV node. In conclusion, the rate-dependent and dual pathway properties of the AV node can be integrated within a common functional framework the contribution of which to individual responses can be quantitatively determined with properly designed protocols and analytic tools.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.