Abstract

AbstractMoSe2 as a typical transition metal dichalcogenide holds great potential for energy storage and catalysis but its performance is largely limited by its poor conductivity. Bi2Se3 nanosheets, a kind of topological insulators, possess gapless edges on boundary and show metallic character on surface. According to the principle of complementary, a novel integrated quasiplane structure of MoSe2/Bi2Se3 hybrids is designed with artistic heteronanostructures via a hot injection in colloidal system. Interestingly, the heteronanostructures are typically constituted by single‐layer Bi2Se3 hexagonal nanoplates evenly enclosed by small ultrathin hierarchical MoSe2 nanosheets on the whole surfaces. X‐ray photoelectron spectroscopy investigations suggest obvious electron transfer from Bi2Se3 to MoSe2, which can help to enhance the conductivity of the hybrid electrode. Especially, schematic energy band diagrams derived from ultraviolet photoelectron spectroscopy studies indicate that Bi2Se3 has higher EF and smaller Φ than MoSe2, further confirming the electronic modulation between Bi2Se3 and MoSe2, where Bi2Se3 serves as an excellent substrate to provide electrons and acts as channels for high‐rate transition. The MoSe2/Bi2Se3 hybrids demonstrating a low onset potential, small Tafel slope, high current density, and long‐term stability suggest excellent hydrogen evolution reaction activity, whereas a high specific capacitance, satisfactory rate capability, and rapid ions diffusion indicate enhanced supercapacitor performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call