Abstract
Quantum information science aims to harness uniquely quantum mechanical properties to enhance measurement and information technologies, and to explore fundamental aspects of quantum physics. Of the various approaches to quantum computing [1], photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level [2,3]. Encoding quantum information in photons is also an appealing approach to quantum communication, metrology (eg. [4]), measurement (eg. [5]) and other quantum technologies [6]. However, the implementation of optical quantum circuits with bulk optics has reached practical limits. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability [7]. Here we report high-fidelity silica-on-silicon integrated optical realizations of key quantum photonic circuits, including two-photon quantum interference and a controlled-NOT logic gate [8]. We have demonstrated controlled manipulation of up to four photons on-chip, including highfidelity single qubit operations, using a lithographically patterned resistive phase shifter [9]. We have used this architecture to implement a small-scale compiled version of Shor's quantum factoring algorithm [10], demonstrated heralded generation of tunable four photon entangled states from a six photon input [11], a reconfigurable two-qubit circuit [12], and combined waveguide photonic circuits with superconducting single photon detectors [13]. We describe complex quantum interference behavior in multi-mode interference devices with up to eight inputs and outputs [14], and quantum walks of correlated particles in arrays of coupled waveguides [15]. Finally, we give an overview of our recent work on fundamental aspects of quantum measurement [16,17] and diamond [18,19] and nonlinear [20,21] photon sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.