Abstract

Understanding the features of compounds that determine their high serotonergic activity and selectivity for specific receptor subtypes represents a pivotal challenge in drug discovery, directly impacting the ability to minimize adverse events while maximizing therapeutic efficacy. Up to now, this process has been a puzzle and limited to a few serotonergic targets. One approach represented in the literature focuses on receptor structure whereas in this study, we followed another strategy by creating AI-based models capable of predicting serotonergic activity and selectivity based on ligands' representation by molecular descriptors. Predictive models were developed using Automated Machine Learning provided by Mljar and later analyzed through the SHAP importance analysis, which allowed us to clarify the relationship between descriptors and the effect on activity and what features determine selective affinity for serotonin receptors. Through the experiments, it was possible to highlight the most important features of ligands based on highly efficient models. These features are discussed in this manuscript. The models are available in the additional modules of the SerotoninAI application called "Serotonergic activity" and "Selectivity".

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.