Abstract

Ethnopharmacological relevanceShuangshen Pingfei formula (SSPF), a Chinese medicine prescription, has been prescribed to alleviate PF. However, little is known about the molecular mechanism underlying PF progression and the regulatory mechanism in SSPF. Aims of the studyTo discriminate the molecular alterations underlying the development of pulmonary fibrosis (PF) and reveal the regulatory mechanism of Shuangshen Pingfei formula (SSPF). Materials and methodsAn integrated analysis of a time-course pathology combined with proteomics and metabolomics was performed to investigate changes in body weight, survival rate, lung coefficient, histopathology, proteins, and metabolites of lung tissues at different time points upon bleomycin (BLM) exposure and SSPF treatment. ResultsThe results showed that PF progression was characterized by gradually aggravated fibrosis accompanied by inflammation with extended exposure (7, 14, and 21 days). SSPF significantly attenuated lung fibrosis, as evidenced by increased weight, and reduced lung coefficients and fibrosis scores. Moreover, 368 common differentially expressed proteins (DEPs) were identified, and 102 DEPs were continuously and monotonically upregulated via proteomics among the three BLM treatments. The DEPs were principally involved in extracellular matrix (ECM) remodeling and arginine and proline (AP) metabolic reprogramming. Additionally, metabolomics analyses revealed that BLM exposure mainly affected six metabolism pathways, including 34 differentially regulated metabolites (DRMs). Furthermore, correlation analysis found that several DEPs and DRMs, including L-ornithine, S-adenosyl-L-methionine, ARG, and AOC1, were associated with arginine and proline metabolism, and 8,9-EET, 8,9-DHET, CYP2B, etc., were involved in arachidonic acid (AA) metabolism, suggesting that these two pathways play a critical role in the development of fibrosis. After SSPF treatment, the related protein expression and metabolic disorders were regulated, implying that SSPF provides potential solutions to target these pathways for benefit in the treatment of PF. ConclusionOur data suggest that ECM remodeling, and metabolic reprogramming of AP and AA are distinctive features of PF development. Simultaneously, we confirmed that SSPF could effectively regulate metabolic disorders, indicating its potential clinical application for PF therapy. Our findings using multiple approaches provide a molecular-scale perspective on the mechanisms of PF progression and the amelioration of SSPF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call