Abstract
Aquaponics is emerging as an alternative for high-health food production. Being able to identify the technical viability of non-conventional plants and fish species would help to increase the interest and possibilities in aquaponic systems. The goal of the present study was to evaluate the aquaponics production of two garnish species: scallion (S) and parsley (P), using effluents of pacu and red tilapia culture. Two aquaponics devices were used, differing according to the fish species, generating two different effluents. Thus, for plant performance, four treatments were evaluated in a factorial design (plant species and fish effluent as main factors), as followed: Pacu-S, Tilapia-S, Pacu-P, and Tilapia-P, with three replicates each, for 35 days. Fish performance was evaluated using Student’s t test. Each experimental device included a fish tank, filters, and six experimental units for the plants (floating rafts). Results indicated that feed conversion ratio (FCR) was higher in tilapia as compared to pacu (p 0.05), except for higher number of leaves per plant in scallion cultured using pacu effluent. Plant performance comparing both plant species indicated that scallion performed better as compared to parsley in all parameters. In addition, scallion also performed better related to the plant quality index. The results indicate that pacu presented a viable alternative for the aquaponics production, and regarding to the garnish, scallion performed better results as compared to parsley.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.