Abstract
Abstract Market dynamics of today are constantly evolving in the presence of emerging technologies such as Additive Manufacturing (AM). Drivers such as mass customization strategies, high part-complexity needs, shorter product development cycles, a large pool of materials to choose from, abundant manufacturing processes, diverse streams of applications (e.g. aerospace, motor vehicles, and health care) and high cost incurred due to manufacturability of the part have made it essential to choose the right compromise of materials, manufacturing processes and associated machines in early stages of design considering the Design for Additive Manufacturing guidelines. There exists a complex relationship between AM products and their process data. However, the literature to-date shows very less studies targeting this integration. As several criteria, material attributes and process functionality requirements are involved for decision making in the industries, this paper introduces a generic decision methodology, based on multi-criteria decision-making tools, that will not only provide a set of compromised AM materials, processes and machines but will also act as a guideline for designers to achieve a strong foothold in the AM industry by providing practical solutions containing design oriented and feasible material-machine combinations from a current database of 38 renowned AM vendors in the world. An industrial case study, related to aerospace, has also been tested in detail via the proposed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.