Abstract

Lignocellulose can be converted sustainably to fuels, power and value-added chemicals like fatty acid esters. This study presents a concept for the first eco-friendly enzymatic synthesis of economically important fatty acid sugar esters based on lignocellulosic biomass. To achieve this, beech wood cellulose fiber hydrolysate was applied in three manners: as sugar component, as part of the deep eutectic solvent (DES) reaction system and as carbon source for the microbial production of the fatty acid component. These fatty acids were gained from single cell oil produced by the oleaginous yeast Cryptococcus curvatus cultivated with cellulose fiber hydrolysate as carbon source. Afterwards, an immobilized Candida antarctica lipase B was used as the biocatalyst in DES to esterify sugars with fatty acids. Properties of the DES were determined and synthesized sugar mono- and di-esters were identified and characterized using TLC, MS, and NMR. Using this approach, sugar esters were successfully synthesized which are 100% based on lignocellulosic biomass.

Highlights

  • With an estimated production of 120–140 billion tons per year, lignocellulose constitutes the most abundant organic material in the world

  • For the sustainable production of fatty acid sugar ester biosurfactants monosaccharides originated from enzymatically hydrolyzed cellulose fiber fraction and fatty acid methyl esters derived from microbially produced triacylglycerols are esterified

  • The production of single cell oil based on cellulose fiber fraction and their transesterification to fatty acid methyl ester (FAME) is reported (3.1)

Read more

Summary

Introduction

With an estimated production of 120–140 billion tons per year, lignocellulose constitutes the most abundant organic material in the world. Lignocellulose is the main component of woody and grass-like biomass and consists of cellulose, hemicellulose and lignin, containing up to 75% of carbohydrates and it is excellently suited as a substrate for a biorefinery (Herrera, 2006; Pauly and Keegstra, 2008; Zhao et al, 2009; Cherubini, 2010; FitzPatrick et al, 2010). In contrast to renewable resources of the first generation, these carbohydrates are not competing with food production. They are a valuable substrate for both biotechnological and (bio-)chemical processes but require previous fractionation. By applying the physico-chemical organosolv process the three main components from lignocellulose can be separated using an aqueous-organic solvent system under high pressure and temperature. The cellulose fiber fraction can be subsequently saccharified enzymatically yielding a glucose-rich hydrolysate, which is highly suitable as a microbial carbon source, as a building block or as a pre-cursor for other (fine-)chemicals (Nigam, 2001; Laure et al, 2014; Dörsam et al, 2017)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call