Abstract

AbstractSimultaneous evaluation of multiple time scale decisions has been regarded as a promising avenue to increase the process efficiency and profitability through leveraging their synergistic interactions. Feasibility of such an integral approach is essential to establish a guarantee for operability of the derived decisions. In this study, we present a modeling methodology to integrate process design, scheduling, and advanced control decisions with a single mixed‐integer dynamic optimization (MIDO) formulation while providing certificates of operability for the closed‐loop implementation. We use multi‐parametric programming to derive explicit expressions for the model predictive control strategy, which is embedded into the MIDO using the base‐2 numeral system that enhances the computational tractability of the integrated problem by exponentially reducing the required number of binary variables. Moreover, we apply the State Equipment Network representation within the MIDO to systematically evaluate the scheduling decisions. The proposed framework is illustrated with two batch processes with different complexities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call