Abstract
The vulnerability of automatic speaker verification (ASV) systems to spoofing is widely acknowledged. Recent years have seen an intensification in research efforts to develop spoofing countermeasures, also known as presentation attack detection (PAD) systems. Much of this work has involved the exploration of features that discriminate reliably between bona fide and spoofed speech. While there are grounds to use different front-ends for ASV and PAD systems (they are different tasks) the use of a single front-end has obvious benefits, not least convenience and computational efficiency, especially when ASV and PAD are combined. This paper investigates the performance of a variety of different features used previously for both ASV and PAD and assesses their performance when combined for both tasks. The paper also presents a Gaussian back-end fusion approach to system combination. In contrast to cascaded architec-tures, it relies upon the modelling of the two-dimensional score distribution stemming from the combination of ASV and PAD in parallel. This approach to combination is shown to gener-alise particularly well across independent ASVspoof 2017 v2.0 development and evaluation datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.