Abstract

Summary Pore-pressure (PP) and fracture-gradient (FG) predictions were prepared for Prelude development wells in the Browse basin in offshore northwest Australia. The PP forecasts were based on resistivity- and sonic-based models calibrated with pressure measurements and drilling events, such as kicks from existing wells. FGs were based on leakoff tests and loss events from offset wells and were not necessarily equal to either the minimum compressive principal stress (often considered a lower bound to FG) or the formation-breakdown pressure (often considered an upper bound to FG that includes effects of formation tensile strength and near-wellbore hoop stress). The minimum compressive horizontal stress was calculated from lithology-dependent effective-stress ratios. Maximum horizontal stress was inferred from observed breakouts. PP and stresses were combined with formation properties from well logs and laboratory rock-mechanics tests to provide input for elastoplastic (shales) and poroelastic (sands) borehole-stability (BHS) models. These techniques are applicable to exploration, appraisal, or early-development wells that have potential for encountering geopressured formations in high-angle well sections requiring good predrill estimates to adequately plan the casing and drilling programs and determine BHS. The predrill studies can be extended to provide integrated real-time PP and BHS while drilling, and the models can be recalibrated after each well to provide updated predictions for subsequent wells. There are only minor deviations in the predicted PP and FG among the different well locations considered. Common features include potential loss zones in the shallow overburden, pressure ramp within the Jamieson, pressure regression below the Aptian, and near-hydrostatic pressure within the Upper Swan and below. The BHS models indicate that minimum-required mud weight in deviated sections could be up to 20% higher than that required to balance formation PP. In one well that would cross a suspected fault, the risk of fault reopening or reactivation is low.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call