Abstract

Due to the complexity of a multimode plug-in hybrid electric vehicle (PHEV) powertrain, the energy management strategy of the said powertrain is a prime candidate for the application of optimal control methods. This article presents a predictive control strategy for optimal mode selection and powertrain control for a multimode PHEV capable of real-time control. This method utilizes predictions of future vehicle behavior in order to plan an optimal path of vehicle powertrain modes that minimizes energy consumption. This article also presents the integration of the developed optimal mode control strategy with an optimal powersplit strategy using nonlinear model predictive control to create a real-time integrated predictive powertrain controller (IPPC) responsible for all aspects of multimode PHEV powertrain supervisory control. The IPPC provides a real-time optimal solution to address the major challenge of a multimode HEV powertrain control: an integrated discrete and continuous optimization. Testing in simulation has shown the IPPC to be capable of reducing PHEV energy consumption by 4%–10% across real-world and standard drive cycles. In addition, the presented IPPC was deployed onto a rapid prototyping embedded controller where on-road, real-time testing has shown the IPPC to be capable of providing an energy reduction of 5%, thus confirming the energy savings observed in simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.