Abstract

A novel control technique is proposed by combining iterative learning control (ILC) and model predictive control (MPC) with updating-reference trajectory for point-to-point tracking problem of batch process. In this paper, a batch-to-batch updating-reference trajectory, which passes through the desired points, is firstly designed as the tracking trajectory within a batch. The updating control law consists of P-type ILC part and MPC part, in which P-type ILC part can improve the performance by learning from previous executions and MPC part is used to suppress the model perturbations and external disturbances. Convergence properties of the integrated predictive iterative learning control (IPILC) are analyzed theoretically, and the sufficient convergence conditions of output tracking error are also derived for a class of linear systems. Comparing with other point-to-point tracking control algorithms, the proposed algorithm can perform better in robustness. Furthermore, updating-reference relaxes the constraints for system outputs, and it may lead to faster convergence and more extensive range of application than those of fixed-reference control algorithms. Simulation results on typical systems show the effectiveness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.