Abstract

To enhance the control performance of a permanent magnet linear synchronous motor (PMLSM) and to improve its dynamic response performance and steady-state accuracy, a PMLSM model predictive integrated control (MPC) system based on a super-twisting sliding mode observer (ST-SMO) is proposed. According to the mathematical model of a PMLSM, this paper designs a three-step model to predict the comprehensive control correction factor, optimize the prediction speed and current, reduce the response time, and enhance the system’s stability. Meanwhile, in order to solve the problem of the PMLSM’s high dependence on mechanical sensors, the ST-SMO is introduced to observe the rotation speed of PMLSM, which has better tracking performance and observation accuracy than a traditional sliding mode observer (SMO). Finally, the experimental verification is carried out on the PMLSM experimental platform. The software simulation and hardware experiment results show that the control system designed in this paper not only simplifies the overall structure of the system, but it also has better control performance and tracking ability. Compared with traditional control methods and SMO, it has better control performance, stability, and speed-tracking performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.