Abstract
This paper proposes an integrated framework for wind farm maintenance that combines i) predictive analytics methodology that uses real-time sensor data to predict future degradation and remaining lifetime of wind turbines, with ii) a novel optimization model that transforms these predictions into profit-optimal maintenance and operational decisions for wind farms. To date, most applications of predictive analytics focus on single turbine systems. In contrast, this paper provides a seamless integration of the predictive analytics with decision making for a fleet of wind turbines. Operational decisions identify the dispatch profiles. Maintenance decisions consider the tradeoff between sensor-driven optimal maintenance schedule, and the significant cost reductions arising from grouping the wind turbine maintenances together—a concept called opportunistic maintenance. We focus on two types of wind turbines. For the operational wind turbines, we find an optimal fleet-level condition-based maintenance schedule driven by the sensor data. For the failed wind turbines, we identify the optimal time to conduct corrective maintenance to start producing electricity. The economic and stochastic dependence between operations and maintenance decisions are also considered. Experiments conducted on i) a 100-turbine wind farm case, and ii) a 200-turbine multiple wind farms case demonstrate the advantages of our proposal over traditional policies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.