Abstract
This paper presents an innovative image matching method for reliable and dense image matching on poor textural images, which is the integrated point and edge matching based on the self-adaptive edge-constrained triangulations. Firstly, several seed points and seed edges are obtained on the stereo images, and they are used to construct a pair of initial edge-constrained triangulations on the images. Then, points and edges are matched based on the triangle constraint and other constraints. The newly matched points and edges are inserted into the triangulations and the constrained triangulations are updated dynamically along with the matching propagation. The final results will be the final edge-constrained triangulations generated from the successfully matched points and edges. Experiments using typical space-borne, airborne, and terrestrial images with poor textures revealed that the integrated point and edge matching method based on self-adaptive triangulations is able to produce dense and reliable matching results. Moreover, from the final matched points and edges, 3D points and edges preserving the physical boundaries of objects can be further derived based on photogrammetric techniques, which is ideal for further object modeling applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.