Abstract

Sodium taurocholate cotransporting polypeptide (NTCP) is an important hepatocyte transporter, while its physiological functions require further investigation. In our study, an integrated plasma and liver GC–MS- and LC-MS-based metabolomics strategy with an optimized two-step liquid-liquid extraction was utilized to explore the physiological functions of NTCP via a knockout (KO) mouse model. The present study found that NTCP deficiency resulted in obvious metabolic change in the plasma and liver of mice. Totally, 102 and 87 differential metabolites were discovered in the liver and plasma, respectively. Pathway analysis revealed that the metabolism of tyrosine, glycine, taurine, fatty acid and glycerophospholipid as well as the biosynthesis of tryptophan, pantothenate and CoA were significantly dysregulated in the Ntcp KO mice, indicating that NTCP is closely involved in these metabolic pathways. Moreover, L-tryptophan, cadaverine and D-pantothenic acid could serve as the diagnostic biomarker for NTCP deficiency. Our study provided deep insights into the physiological functions of NTCP, and the findings would hold the great potential to be used for the discovery of new therapeutic and diagnostic strategies for NTCP deficiency clinically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.