Abstract

Embedded functionality is one main focus of technology in the upcoming century. The embedded structures are able to work as sensors and/or actuators at the same time, making a passive structure to a mechatronic device. In this chapter we focus on structures comprehending piezoceramics as actuators. Pierre and Jacques Curie discovered the piezoelectric effect in 1880. With this effect a material itself can effect a small displacement by voltage application. Only for resonance applications like speaker the reachable displacement is adequate. For most technical drive systems the reachable displacement of a piezoelectric actuator seems insufficient. This changes with the utilization of displacement amplification systems. A displacement amplification system transforms the high force but small displacement of the piezoactuator to a moderate force with useful displacement. These displacement amplification systems are composed of passive structures of steel, polymer or ceramics and the piezoactuator itself. Basic amplification systems are bending actuators and flat leverage actuators. Bending actuators or bimorph actuators are composed of a thin piezoceramics actuator and a passive steel or ceramic plate opposite. The shrinking of the piezoceramic actuator’s length by voltage application results in a bending movement allowing only very small forces. The flat leverage actuator uses the piezoactuator, the leverages and joints. Critical for these systems are the joints and the stiffness. If there is minimal backlash in one joint it will absorb the displacement of the piezo. With rising stiffness of the system the applicable force rises, but the reachable displacement will shrink. In this chapter we give an introduction to piezoceramics, conventional piezoactuators and a new manufacturing technology. Then we focus on displacement amplification systems developed by the authors in recent years. We optimise the structures for high amplification, maximal stiffness and maximum speed of the actuator depending on the field of application. Afterwards our focus changes to two applications for amplification systems developed by the authors. Finally we discuss the capabilities of piezoceramics from the technical point of view.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call