Abstract

NASA is working with US industry and academia to develop Photonic Integrated Circuits (PICs) for: (1) Sensors (2) Analog RF applications (3) Computing and free space communications. The PICs provide reduced size, weight, and power that is critical for space-based systems. We describe recent breakthrough 3D monolithic integration of photonic structures, particularly high-speed graphene-silicon devices on CMOS electronics to create CMOS-compatible highbandwidth transceivers for ultra-low power Terabit-scale optical communications. An integrated graphene electro-optic modulator has been demonstrated with a bandwidth of 30 GHz. Graphene microring modulators are especially attractive for dense wavelength division multiplexed (DWDM) systems. For space-based optical communication and ranging we have demonstrated generating a variable number of channels from a single laser using breadboard components, using a single-sideband carrier-suppressed (SSBCS) modulator driven by an externally-supplied RF tone (arbitrary RF frequency), a tunable optical bandpass filter, and an optical amplifier which are placed in a loop. We developed a Return--to-Zero (RZ) Differential Phase Shift Keying (DPSK) laser transmitter PIC using an InP technology platform that includes a tunable laser, a Semiconductor Optical Amplifier (SOA), high-speed Mach-Zehnder Modulator (MZM), and an electroabsorption (EAM) modulator. A Silicon Nitride (SiN) platform integrated photonic circuit suitable for a spectrally pure chip-scale tunable opto-electronic RF oscillator (OEO) that can operate as a flywheel in high precision optical clock modules, as well as radio astronomy, spectroscopy, and local oscillator in radar and communications systems is needed. We have demonstrated a low noise optical frequency combs generation from a small OEO prototypes containing very low loss (~1 dB) waveguide couplers of various shapes and sizes integrated with an ultrahigh-Q MgF2 resonators. An innovative miniaturized lab-on-a-chip device is being developed to directly monitor astronaut health during missions using ~3 drops of body fluid sample like blood, urine, and potentially other body fluids like saliva, sweat or tears. The first-generation system comprises a miniaturized biosensor based on PICs (including Vertical Cavity Surface Emitting Laser – VCSEL, photodetector and optical filters and biochemical assay that generates a fluorescent optical signal change in response to the target analyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.