Abstract

Diverse chip-based sensors utilizing integrated silicon photonics have been demonstrated in resonator and phase shifter/interferometer configurations. Till date, interferometric techniques with the Mach-Zehnder Interferometer (MZI) and Young’s interferometer have shown the lowest mass detection limits (in pg/mm<sup>2</sup>). Slow light in photonic crystal waveguides integrated with MZIs enables compact geometries due to enhanced optical path lengths as light propagates with high group index. In a typical MZI, light propagating in the signal arm overlaps with analytes and undergo a relative phase change with respect to the light in the reference arm which leads to measured output intensity changes. In this paper, using integrated photonic methods, we demonstrate a slow light enhanced Michelson interferometer (MI) biosensor, wherein the reference and signal arms are traversed twice by the propagating optical mode. As a result, the analyte interaction length is effectively doubled since the propagating optical mode undergoes twice the phase shift as would be observed in a MZI. In an asymmetric MI configuration, the resultant doubling of the phase shift is observed as a doubling of the resonance wavelength shift for a fixed change in the analyte concentration. The device sensitivity is thus doubled with respect to a conventional MZI while also effectively halving the geometric length compared to the MZI sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call