Abstract

AbstractPhotometric redshifts, i.e. redshifts derived by comparing an observed spectral-energy distribution (SED) to a range of empirical or theoretical SED templates, are commonly used in studies of the high-redshift Universe. Often, the next step is to use these redshifts as fixed input parameters for SED fitting to derive physical properties for each galaxy. However, this two-step approach ignores degeneracies between redshift and, e.g., stellar mass. Here I present first results using an improved approach that integrates both methods. I find that mass determinations are, on average, three times more uncertain than they seem from the common two-step approach. If not accounted for, these underestimated uncertainties can impact our ability of making meaningful comparisons between observations and simulations of galaxy evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call