Abstract

A synergistic system of integrated photocatalysis-adsorption-membrane separation in a rotating reactor was designed. The composite membrane was prepared via filtration process under vacuum, and it was composed of graphene oxide (GO) acted as the separation membrane, activated carbon (AC) as the adsorbent and Ag@BiOBr as the photocatalyst, respectively. In this Ag@BiOBr/AC/GO membrane system, rotation of the membrane could avoid the light-shielding effect from organic color pollutants to achieve the complete removal of pollutants. More importantly, the synergistic effect among photocatalysis, adsorption and membrane separation in rotating reactor was significant for the efficient removal of rhodamine B (RhB). In the Ag@BiOBr/AC/GO composite membrane, GO membrane layer could reject the organic molecular by the assistance of AC layer with efficient adsorption capacity, and Ag@BiOBr at outer layer could photodegrade the organics under visible light irradiation. The photocatalysis process could solve the problem of membrane fouling and adsorption could assist GO membrane for stopping the permeation of pollutants. Meanwhile, GO membrane was not only beneficial for catalyst recovery, but also could concentrate the pollutants via the membrane separation to accelerate the photocatalytic degradation. At the same time, both the photocatalysis degradation and membrane separation could promote the adsorption ability of AC. This synergistic system showed the significant potential for the practical application in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call