Abstract

Introducing and applying an appropriate strategy for reservoir modeling in strongly heterogeneous and fractured reservoirs is a controversial issue in reservoir engineering. Various integration approaches have been introduced to combine different sources of information and model building techniques to handle heterogeneity in geological complex reservoir. However, most of these integration approaches in several studies fail on modeling strongly fractured limestone reservoir rocks of the Zagros belt in southwest Iran. In this study, we introduced a new strategy for appropriate modeling of a production formation fractured rock. Firstly, different rock types in the study area were identified based on well log data. Then, the Sarvak Formation was divided into nine zones, and the thinner subzones were used for further fine modeling procedure. These subzones were separated based on different fracture types and fracture distribution in each zone. This strategy provided sophisticated distribution of petrophysical parameters throughout the grids of the model, and therefore, it can handle strong heterogeneity of the complex reservoir. Afterward, petrophysical parameters were used to produce an up-scaled 3D gridded petrophysical model. Subsequently, maps of petrophysical properties were derived for each zone of the Sarvak Formation. Evidences achieved in this study indicates Sarvak Formation zone 2 as the target production zone with better performance of reservoir rock and the southwestern part of the field as area of maximum porosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call