Abstract

Summary Permeability provides a measure of the ability of a porous medium to transmit fluid and is significant in evaluating reservoir productivity. A case study that compares different methods of permeability prediction in a complex carbonate reservoir is presented in this paper. Presence of siliciclastic fines and diagenetic minerals (e.g. dolomite) within carbonate breccias has resulted in a tight and heterogeneous carbonate reservoir in this case. Permeability estimations from different methods are discussed and compared. In the first part of the paper, permeability measurements from conventional core analysis (CCAL), mercury-injection capillary pressure (MICP) tests, modular formation dynamic tests (MDTs), and nuclear-magnetic-resonance (NMR) logs are discussed. Different combinations of methods can be helpful in permeability calculation, but depending on the nature and scale of each method, permeability assessment in heterogeneous reservoirs is a considerable challenge. Among these methods, the NMR log provides the most continuous permeability prediction. In the second part of the paper, the measured individual permeabilities are combined and calibrated with the NMR-derived permeability. The conventional NMR-based free-fluid (Timur-Coates) model is used to compute the permeability. The NMR-estimated permeability is influenced by wettability effects, presence of isolated pores, and residual oil in the invaded zone. A new modified Timur-Coates model is established on the basis of fluid saturations and isolated pore volumes (PV) of the rock. This model yields a reasonable correlation with the scaled core-derived permeabilities. However, because of the reservoir heterogeneity, particularly in the brecciated intervals, discrepancies between the core data and the modified permeability model are expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.