Abstract
An integrated advanced supercritical coal-fired oxyfuel power plant with a novel cryogenic CO2 separation and compression technology for high purity CO2 to suit injection for Enhanced Oil Recovery purposes is investigated. The full process is modelled in Aspen Plus® consisting of: an Air Separation Unit (ASU), an Advanced Supercritical Pulverised Fuel (ASC PF) power plant with a bituminous coal as feedstock, a steam cycle, and a Carbon dioxide Purification Unit (CPU). The proposed CPU process accommodates a distillation column with an integrated reboiler duty to achieve a very high purity CO2 product (99.9%) with constrained oxygen levels (100ppm). This work presents a detailed analysis of the CO2 separation and compression process within the full power plant, including effective heat integration to reduce the electricity output penalty associated with oxyfuel CO2 capture. The results of this analysis are compared with previous studies and indicate that the combined application of process optimisation in the CPU and advanced heat integration with the power plant offer promising results: In this work a high purity CO2 product was achieved while maintaining 90% capture for a net plant efficiency of 38.02% (LHV), compared with a thermal efficiency of 37.76% (LHV) for a reference simulation of an ASC PF oxy-fired plant with advanced heat integration, providing a lower purity CO2 product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.