Abstract
Owing to the relatively limited efficiency of separate power, heating and cooling production systems, multi-generation (combined power, heat and/or cooling) has drawn a lot of attention in the recent years. The design of multigeneration systems based on the Organic Rankine Cycle (ORC) and adsorption cooling is appealing, since these technologies can utilize medium and low temperature heat including waste heat and solar energy. In the present work, a study of four potential system configurations of an integrated Organic Rankine Cycle (ORC) - adsorption cycle is carried out. For a given waste heat source, the first and second law efficiencies of the investigated configurations are calculated for a number of organic fluids considering a subcritical and a supercritical ORC. Furthermore, the systems are optimized taking into account the pinch point values in the heat exchangers. A zeolite-water adsorption chiller is considered with a nominal cooling capacity of 13 kWc. The results of each configuration are compared with that of an integrated ORC - Vapour Compression Cycle (VCC) with the same cooling capacity. The highest exergetic efficiencies for the ORC-adsorption chiller and the ORC-VCC systems are equal to 40% and 30%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.