Abstract

The biofuel management of a biofuel-penetrated district heating system is complicated due to its association with multiple and polymorphic uncertainties. To handle uncertainties and system dynamic complexities, an inexact two-stage compound-stochastic mixed-integer programming technique is proposed, innovatively based on the integration of different uncertain optimization approaches. The proposed technique can not only address the inexact recourse problems sourced from multiple and compound uncertainties existing in the pre-regulated biofuel supply–demand match mode, but can also quantitatively analyze the conflicts between the economic target that minimizes the system cost and the risk preference that maximizes the heating service satisfaction. The developed model is applied to a real-world biofuel management case study of a district heating system to obtain the optimal biofuel management schemes subject to supply–demand, policy requirement constraints, and the financial minimization objective. The results indicate that biofuel allocation and expansion schemes are sensitive to the multiple and compound uncertainty inputs, and the corresponding biofuel-deficit change trends of three heat sources are obviously distinct with the system’s condition, varying due to the complicated interactions of the system’s components. Beyond that, a potential trade-off relationship between the heating cost and the constraint-violation risk can be obtained by observing system responses with thermalization coefficient varying.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call