Abstract

This research presents an integrated optimal controller to maximize the fuel efficiency of a Hybrid Electric Vehicle (HEV) traveling on rolling terrain. The controller optimizes both the vehicle acceleration and the hybrid powertrain operation. It takes advantage of the emerging Connected Vehicle (CV) technology and utilizes present and future information as optimization input, which includes road topography, and dynamic speed limit. The optimal control problem was solved using Pontryagin’s Minimum Principle (PMP). Efforts were made to reduce the computational burden of the optimization process. The evaluation shows that the benefit of the proposed optimal controller is significant compared to regular HEV cruising at the speed limit on rolling terrain. The benefit ranges from 5.0% to 8.9% on mild slopes and from 15.7% to 16.9% on steep slopes. The variation is caused by the change of hilly road density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.