Abstract

Non-small cell lung cancer (NSCLC) is the frequent subtype of lung cancer and the currently used treatment methods, diagnosis, and chemoresistance are relatively ineffective. Determining the pharmacological targets from active biomolecules of medicinal plants has become a frontiers era for biomedical research to develop novel therapies. In view of these scenarios, this pilot study, network pharmacology, cheminformatics, integrative omics, molecular docking and in vitro anti-cancer analysis were performed to unveil the multi-targeted treatment mechanisms of novel plant bioactives to treat lung cancer. Bioactive molecules from medicinal plants were compiled from PubChem. Network pharmacology approach revealed that 29 compounds efficiently target the 390 human and lung cancer associated genes. In addition, comparative analysis was performed and identified the 7 bioactive molecules significantly targeting 8 lung cancer genes. The integrative omics analysis discovered unique genes between the lung cancer and normal lung tissues. These genes were further validated through protein-protein interaction, gene ontology, gene functional and pathway enrichment, boxplot and overall survival analyses to understand the function of unique genes and their involvement in cancer signaling pathways. Survival heatmap analyses identified the significant prognostic genes. Docking results revealed that, lupeol and p-coumaric acid displayed high binding affinities with MIF, CCNB1, FABP4. Hence, we selected these two bioactives for in vitro analysis. Furthermore, these selected bioactives were showed concentration dependent cytotoxicity against the lung adenocarcinoma cells (A549). This holistic study has opened up novel avenues and unravels the cancer prognostic genes which could serve as druggable target and bioactives with anti-cancerous efficacy. Further functional validations are prerequisites to deciphering these bioactives as commercial drug candidates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.