Abstract

In this study, bio-inspired computational techniques have been exploited to get the numerical solution of a nonlinear two-point boundary value problem arising in the modelling of the corneal shape. The computational process of modelling and optimization makes enormously straightforward to obtain accurate approximate solutions of the corneal shape models through artificial neural networks, pattern search (PS), genetic algorithms (GAs), simulated annealing (SA), active-set technique (AST), interior-point technique, sequential quadratic programming and their hybrid forms based on GA–AST, PS–AST and SA–AST. Numerical results show that the designed solvers provide a reasonable precision and efficiency with minimal computational cost. The efficacy of the proposed computing strategies is also investigated through a descriptive statistical analysis by means of histogram illustrations, probability plots and one-way analysis of variance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.