Abstract

A large-scale roll-out of a communication and measurement infrastructure is an essential prerequisite for more efficient and robust power grids with a high number of renewable energy resources. In this work, we propose an integrated optimization model for the minimum cost design of a wide area measurement system in smart power grids. The planning approaches proposed so far in the literature mostly consider the optimal placement of measurement devices and the design of a communication network independently, and assume the existence of only one communication technology. In contrast, our proposed novel model enables an integrated planning with a minimum number of both data concentrator and measurement units for observability of the whole power system, and a hierarchical heterogeneous communication network design under data communication requirements of delay and capacity. The application of the proposed model on test networks validates the reduction of the deployment and operational costs as a result of the integrated modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call